
Author: Gabriel Rovesti

Introduction
This document provides a rigorous mathematical foundation for understanding programming
language semantics, with a focus on functional languages. We develop the formal tools
necessary to precisely define, analyze, and reason about programming languages -
particularly their syntax, operational semantics, and type systems.

Part 1: Mathematical Foundations of Syntax
1.1 Abstract Syntax
Abstract syntax trees (ASTs) provide a mathematical representation of program structure
that abstracts away from concrete syntax details.

Definition 1.1.1: An abstract syntax tree is a labeled tree where:

Definition 1.1.2: The abstract syntax for our functional language is given by the following
grammar:

Note that the abstract syntax is distinct from concrete syntax, which includes parsing
concerns and notation like parentheses.

1.2 Structural Induction

Internal nodes represent operations or language constructs
Leaf nodes represent atomic values or variables
The structure represents the hierarchical organization of a program

e ::= x (variable)

| λx.e (abstraction)

| e₁ e₂ (application)

| n (integer literal)

| e₁ + e₂ (addition)

| true | false (boolean literals)

| if e₁ then e₂ else e₃ (conditional)

| let x = e₁ in e₂ (let binding)

| let rec f = λx.e₁ in e₂ (recursive let binding)

| (e₁, ..., eₙ) (tuple)
| πᵢ e (projection)

Structural induction is a proof technique for demonstrating properties of inductively defined
structures like ASTs.

Principle of Structural Induction: To prove that a property P holds for all terms in an
inductively defined set S:

1.3 Variable Binding and Scope
Definition 1.3.1: In an expression λx.e, the variable x is bound in e. A variable that is not
bound is free.

Definition 1.3.2: The set of free variables in an expression e, denoted FV(e), is defined
inductively:

Definition 1.3.3: An expression with no free variables is closed.

1.4 Alpha-Equivalence and Substitution

Definition 1.4.1: Two expressions are alpha-equivalent if one can be obtained from the other
by consistent renaming of bound variables.

Definition 1.4.2: Substitution of term s for variable x in term t, denoted t[s/x], is defined
inductively with the following constraints:

1. Base case: Prove P holds for all basic elements in S
2. Inductive step: Assume P holds for subterms, then prove it holds for terms constructed

from them

FV(x) = {x}
FV(λx.e) = FV(e) \ {x}
FV(e₁ e₂) = FV(e₁) ∪ FV(e₂)
FV(n) = ∅
FV(e₁ + e₂) = FV(e₁) ∪ FV(e₂)
FV(true) = FV(false) = ∅
FV(if e₁ then e₂ else e₃) = FV(e₁) ∪ FV(e₂) ∪ FV(e₃)
FV(let x = e₁ in e₂) = FV(e₁) ∪ (FV(e₂) \ {x})
FV(let rec f = λx.e₁ in e₂) = (FV(e₁) \ {x, f}) ∪ (FV(e₂) \ {f})
FV((e₁, ..., eₙ)) = FV(e₁) ∪ ... ∪ FV(eₙ)
FV(πᵢ e) = FV(e)

1. x[s/x] = s
2. y[s/x] = y if y ≠ x
3. (t₁ t₂)[s/x] = (t₁[s/x]) (t₂[s/x])
4. (λy.t)[s/x] = λy.(t[s/x]) if y ≠ x and y ∉ FV(s)
5. (λy.t)[s/x] = λy.t if y = x

The use of a fresh variable z is justified by the need for capture-avoiding substitution
(Barendregt's convention), which ensures that free variables in s don't become accidentally
bound during substitution.

Theorem 1.4.3: If e₁ and e₂ are alpha-equivalent, then e₁[s/x] and e₂[s/x] are alpha-
equivalent, provided that s is capture-avoiding.

Part 2: Operational Semantics
2.1 Call-by-Value Small-Step Operational Semantics
Small-step semantics defines program execution as a sequence of atomic steps. We adopt a
call-by-value (CBV) evaluation strategy.

Definition 2.1.1: A small-step semantics is defined by a relation e → e' indicating that
expression e reduces in one step to e'.

For our language, the reduction rules are:

Additionally, we must define evaluation contexts to specify the order of evaluation:

6. (λy.t)[s/x] = λz.((t[z/y])[s/x]) if y ≠ x, y ∈ FV(s), and z is fresh
7. (n)[s/x] = n
8. (t₁ + t₂)[s/x] = (t₁[s/x]) + (t₂[s/x])
9. (true)[s/x] = true, (false)[s/x] = false

10. (if t₁ then t₂ else t₃)[s/x] = if t₁[s/x] then t₂[s/x] else t₃[s/x]
11. (let y = t₁ in t₂)[s/x] = let y = t₁[s/x] in t₂[s/x] if y ≠ x and y ∉ FV(s)
12. (let y = t₁ in t₂)[s/x] = let y = t₁[s/x] in t₂ if y = x
13. (let y = t₁ in t₂)[s/x] = let z = t₁[s/x] in ((t₂[z/y])[s/x]) if y ≠ x, y ∈ FV(s), and z is fresh

1. Beta-reduction (CBV): (λx.e₁) v → e₁[v/x] where v is a value
2. Arithmetic: n₁ + n₂ → n₃ where n₃ is the sum of n₁ and n₂
3. Conditional:

if true then e₂ else e₃ → e₂

if false then e₂ else e₃ → e₃

4. Let binding: let x = v in e → e[v/x] where v is a value
5. Recursive let: let rec f = λx.e₁ in e₂ → e₂[⟨λx.e₁; f; Δ⟩/f] where ⟨λx.e₁; f; Δ⟩ is a value

(recursive closure)
6. Tuple projection: πᵢ(v₁, ..., vₙ) → vᵢ where each vₖ is a value

E ::= □ (hole)

| E e (application left)

| v E (application right)

| E + e (addition left)

With the context rule:

Definition 2.1.2: The reflexive, transitive closure of →, denoted →*, represents multi-step
reduction.

Definition 2.1.3: An expression e is in normal form if there is no e' such that e → e'.

Theorem 2.1.4 (Progress): For a closed, well-typed expression e, either e is a value or there
exists e' such that e → e'.

Theorem 2.1.5 (Preservation): If e is well-typed with type T and e → e', then e' is also well-
typed with type T.

2.2 Basic Theory of Abstract Reduction Systems

An abstract reduction system generalizes the concept of computation steps.

Definition 2.2.1: An abstract reduction system (ARS) is a pair (A, →) where A is a set and →
⊆ A × A is a binary relation on A.

Definition 2.2.2: A reduction sequence in an ARS is a sequence a₀ → a₁ → a₂ → ...

Definition 2.2.3: An element a ∈ A is:

Definition 2.2.4: An ARS is:

Theorem 2.2.5: An ARS is confluent if and only if it has the Church-Rosser property.

| v + E (addition right)

| if E then e else e (conditional guard)

| let x = E in e (let binding)

| (v₁, ..., vᵢ₋₁, E, eᵢ₋₁, ..., eₙ) (tuple component)
| πᵢ E (projection)

e → e'

E[e] → E[e']

Reducible if there exists b such that a → b
In normal form if it is not reducible
Weakly normalizing if there exists a reduction sequence from a to a normal form
Strongly normalizing if every reduction sequence from a is finite

Confluent if for all a, b, c with a → b and a → c, there exists d such that b → d and c → d
Church-Rosser if for all a, b with a ↔ b, there exists c such that a → c and b →* c
Terminating if there are no infinite reduction sequences

Theorem 2.2.6 (Diamond Property): If an ARS has the property that for all a, b, c with a → b
and a → c, there exists d such that b → d and c → d, then it is confluent.

2.3 Environments and Closures

To properly model lexical scoping, we use environments and closures.

Definition 2.3.1: An evaluation environment Δ is a mapping from variables to values:

Definition 2.3.2: A closure ⟨λx.e; Δ⟩ captures a lambda abstraction together with the
environment at the time of definition.

Definition 2.3.3: A recursive closure ⟨λx.e; f; Δ⟩ additionally captures the name of the
recursive function.

2.4 Values
Values are the results of evaluation and are defined as:

where L includes integers, floats, booleans, strings, characters, and unit.

2.5 Program Equivalence

Definition 2.5.1: Two expressions e₁ and e₂ are operationally equivalent, denoted e₁ ≅ e₂, if
for all contexts C, C[e₁] → v if and only if C[e₂] → v for some value v.

Definition 2.5.2: A context C is an expression with a "hole" □ that can be filled with an
expression.

Theorem 2.5.3: Beta-equivalence: (λx.e) v ≅ e[v/x] where v is a value.

Theorem 2.5.4: Eta-equivalence: λx.(e x) ≅ e if x is not free in e.

Part 3: Type Systems
3.1 Simple Types
Definition 3.1.1: The grammar of simple types:

Δ ::= ∅ | Δ,(x ⇝ v)

v ::= L (literal)

| ⟨λx.e; Δ⟩ (closure)
| ⟨λx.e; f; Δ⟩ (recursive closure)
| (v₁, ..., vₙ) (tuple of values)

where c represents type names like int, float, bool, etc.

Definition 3.1.2: A typing context Γ is a finite mapping from variables to types:

Definition 3.1.3: The typing judgment Γ ⊢ e : τ indicates that expression e has type τ in
context Γ.

3.1.4 Typing Rules

τ ::= c (type constructor)

| τ₁ → τ₂ (arrow type)

| α, β, γ, .. (type variables)

| τ₁ * ... * τₙ (tuple type)

Γ ::= ∅ | Γ,(x : τ)

1. Variable:

x ∈ dom(Γ)
Γ(x) = τ

Γ ⊢ x : τ

2. Abstraction:

Γ, x:τ₁ ⊢ e : τ₂

Γ ⊢ λx.e : τ₁ → τ₂

3. Application:

Γ ⊢ e₁ : τ₁ → τ₂ Γ ⊢ e₂ : τ₁

Γ ⊢ e₁ e₂ : τ₂

4. Integer:

Γ ⊢ n : int

5. Addition:

Γ ⊢ e₁ : int Γ ⊢ e₂ : int

Γ ⊢ e₁ + e₂ : int

6. Boolean:

Γ ⊢ true : bool

Γ ⊢ false : bool

7. Conditional:

Γ ⊢ e₁ : bool Γ ⊢ e₂ : τ Γ ⊢ e₃ : τ

Γ ⊢ if e₁ then e₂ else e₃ : τ

8. Let binding:

Γ ⊢ e₁ : τ₁ Γ, x:τ₁ ⊢ e₂ : τ₂

Γ ⊢ let x = e₁ in e₂ : τ₂

9. Recursive let:

Γ, f:τ₁→τ₂ ⊢ λx.e₁ : τ₁→τ₂ Γ, f:τ₁→τ₂ ⊢ e₂ : τ₃

Γ ⊢ let rec f = λx.e₁ in e₂ : τ₃

10. Tuple:

Γ ⊢ e₁ : τ₁ ... Γ ⊢ eₙ : τₙ

Γ ⊢ (e₁, ..., eₙ) : τ₁ * ... * τₙ

11. Projection:

Theorem 3.1.5 (Type Safety): A well-typed program never gets "stuck" (i.e., reaches an
invalid state during execution). This follows from progress and preservation.

3.2 Polymorphic Types and Let-Polymorphism

Definition 3.2.1: A type scheme σ is a type with universally quantified type variables:

The typing environment Γ now maps identifiers to type schemes:

3.2.2 Auxiliary Functions

Several auxiliary functions are needed for polymorphic type systems:

Γ ⊢ e : τ₁ * ... * τₙ 1 ≤ i ≤ n

Γ ⊢ πᵢ e : τᵢ

σ ::= ∀α.τ (type scheme)

Γ ::= ∅ | Γ,(x : σ)

1. Free type variables (ftv):

ftv : (τ ∪ σ ∪ Γ) → P(α)
ftv(c) = ∅
ftv(α) = {α}

ftv(τ₁ → τ₂) = ftv(τ₁) ∪ ftv(τ₂)
ftv(τ₁ * ... * τₙ) = ftv(τ₁) ∪ ... ∪ ftv(τₙ)
ftv(∀α.τ) = ftv(τ) \ {α}
ftv(∅) = ∅
ftv(Γ,(x : σ)) = ftv(σ) ∪ ftv(Γ)

2. Generalization (gen):

gen : Γ × τ → σ

genΓ(τ) = ∀α.τ where α = ftv(τ) \ ftv(Γ)

3. Instantiation (inst):

3.2.3 Polymorphic Typing Rules

3.3 Type Inference (Hindley-Milner)
Definition 3.3.1: A substitution θ is a finite mapping from type variables to types:

Definition 3.3.2: Substitution application θ(τ) is defined inductively:

inst : σ → τ

inst(∀α.τ) = reα(τ)

4. Type variable refreshing (re):

re : P(α) × τ → τ

reα(c) = c

reα(α) = α if α ∉ α
reα(α) = β if α ∈ α and β is fresh
reα(τ₁ → τ₂) = reα(τ₁) → reα(τ₂)

reα(τ₁ * ... * τₙ) = reα(τ₁) * ... * reα(τₙ)

1. Variable:

x ∈ dom(Γ) Γ(x) = σ τ = inst(σ)

Γ ⊢ x : τ

2. Let binding (with polymorphism):

Γ ⊢ e₁ : τ₁ σ₁ = genΓ(τ₁) Γ,(x : σ₁) ⊢ e₂ : τ₂
--

Γ ⊢ let x = e₁ in e₂ : τ₂

θ ::= ∅ | θ,[α ↦ τ]

θ(c) = c

θ(α) = τ if [α ↦ τ] ∈ θ
θ(α) = α if α ∉ dom(θ)
θ(τ₁ → τ₂) = θ(τ₁) → θ(τ₂)

θ(τ₁ * ... * τₙ) = θ(τ₁) * ... * θ(τₙ)

Definition 3.3.3: Substitution application to schemes and environments:

Definition 3.3.4: Composition of substitutions θ₂ ∘ θ₁:

Definition 3.3.5: The most general unifier (mgu) U(τ₁; τ₂) computes a substitution θ such that
θ(τ₁) ≡ θ(τ₂):

3.3.6 Hindley-Milner Type Inference Algorithm

The type inference judgment Γ ⊢ e : τ ▷ θ produces both a type τ and a substitution θ.

θ(∀α.τ) = ∀α.θ'(τ) where θ' = θ \ {α ↦ τ | α ∈ α}
θ(∅) = ∅
θ(Γ,(x : σ)) = θ(Γ),(x : θ(σ))

(θ₂ ∘ θ₁)(τ) = θ₂(θ₁(τ))

U(c₁; c₂) = ∅ if c₁ ≡ c₂
U(α; τ) = [α ↦ τ] if α ∉ ftv(τ)
U(τ; α) = [α ↦ τ] if α ∉ ftv(τ)
U(τ₁ → τ₂; τ₃ → τ₄) = θ₂ ∘ θ₁ where θ₁ = U(τ₁; τ₃), θ₂ = U(θ₁(τ₂); θ₁(τ₄))
U(τ₁ * ... * τₙ; τ'₁ * ... * τ'ₙ) = θₙ ∘ ... ∘ θ₁ where θᵢ = U(θᵢ₋₁ ∘ ...
∘ θ₁(τᵢ); θᵢ₋₁ ∘ ... ∘ θ₁(τ'ᵢ))

1. Literal:

Γ ⊢ n : int ▷ ∅

2. Variable:

x ∈ dom(Γ) Γ(x) = σ τ = inst(σ)

Γ ⊢ x : τ ▷ ∅

3. Abstraction:

Γ,(x : ∀∅.α) ⊢ e : τ₂ ▷ θ₁ τ₁ = θ₁(α) (α fresh)

Γ ⊢ λx.e : τ₁ → τ₂ ▷ θ₁

4. Application:

Example: Step-by-step derivation for the identity function:

Part 4: Practical Examples in Standard ML
4.1 Example: Higher-Order Functions

Higher-order functions take functions as parameters or return them as results.

Γ ⊢ e₁ : τ₁ ▷ θ₁ θ₁(Γ) ⊢ e₂ : τ₂ ▷ θ₂
U(θ₂(τ₁); τ₂ → α) = θ₃ (α fresh)

τ = θ₃(α) θ = θ₃ ∘ θ₂ ∘ θ₁

Γ ⊢ e₁ e₂ : τ ▷ θ

5. Let binding:

Γ ⊢ e₁ : τ₁ ▷ θ₁ σ₁ = genθ₁(Γ)(τ₁)
θ₁(Γ),(x : σ₁) ⊢ e₂ : τ₂ ▷ θ₂ θ = θ₂ ∘ θ₁

Γ ⊢ let x = e₁ in e₂ : τ₂ ▷ θ

6. Recursive let:

Γ,(f : ∀∅.α) ⊢ λx.e₁ : τ₁ ▷ θ₁ Γ₁ = θ₁(Γ) σ₁ = genΓ₁(τ₁) (α
fresh)

Γ₁,(f : σ₁) ⊢ e₂ : τ₂ ▷ θ₂ U(α; θ₁(τ₁)) = θ₃ θ = θ₃ ∘ θ₂ ∘ θ₁
--

Γ ⊢ let rec f = λx.e₁ in e₂ : τ₂ ▷ θ

1. Start with: id = λx.x
2. For λx.x :

Introduce fresh type variable α for x: Γ = {x : α}
Type the body: Γ ⊢ x : α ▷ ∅
By abstraction rule: ∅ ⊢ λx.x : α → α ▷ ∅

3. Final type: id : α → α (polymorphic)

(* Map function over lists *)

fun map f [] = []

| map f (x::xs) = (f x) :: map f xs;

(* Filter function *)

4.2 Example: Tree Operations

Part 5: Advanced Topics
5.1 Linear Types and Substructural Type Systems

Linear types control resource usage by ensuring that variables are used exactly once.

Definition 5.1.1: In a linear type system, each variable must be used exactly once.

fun filter p [] = []

| filter p (x::xs) = if p x then x :: filter p xs else filter p xs;

(* Fold function (right-associative) *)

fun foldr f z [] = z

| foldr f z (x::xs) = f x (foldr f z xs);

(* Fold function (left-associative) *)

fun foldl f z [] = z

| foldl f z (x::xs) = foldl f (f z x) xs;

(* Examples *)

val squares = map (fn x => x * x) [1, 2, 3, 4, 5];

val evens = filter (fn x => x mod 2 = 0) [1, 2, 3, 4, 5];

val sum = foldr (op +) 0 [1, 2, 3, 4, 5];

val factorial = foldl (op *) 1 [1, 2, 3, 4, 5];

(* Binary tree type *)

datatype 'a tree = Empty | Node of 'a * 'a tree * 'a tree;

(* Map over tree *)

fun mapTree f Empty = Empty

| mapTree f (Node(x, left, right)) =

Node(f x, mapTree f left, mapTree f right);

(* Fold over tree *)

fun foldTree f z Empty = z

| foldTree f z (Node(x, left, right)) =

f x (foldTree f z left) (foldTree f z right);

(* Examples *)

val myTree = Node(5,

Node(3, Node(1, Empty, Empty), Empty),

Node(7, Empty, Node(9, Empty, Empty)));

val doubledTree = mapTree (fn x => x * 2) myTree;

val sum = foldTree (fn x => fn left => fn right => x + left + right) 0

myTree;

Definition 5.1.2: In a substructural type system, the structural rules may be restricted:

Linear Typing Rules:

Usage Counting Property: In a well-typed program under a linear type system, for any
execution path, each resource (variable) is used exactly once - neither duplicated nor
discarded. This can be proved by tracking a usage count for each variable and showing that
evaluation preserves this count.

5.2 Lazy Evaluation and Call-by-Name

Definition 5.2.1: Different evaluation strategies:

The key modification for call-by-name semantics is in the β-reduction rule:

Weakening: Introduction of unused variables (forbidden in affine systems)
Contraction: Using variables multiple times (forbidden in linear systems)
Exchange: Changing the order of variables (forbidden in ordered systems)

1. Variable (Linear):

x:τ ⊢ x : τ

2. Abstraction (Linear):

where τ₁ ⊸ τ₂ is a linear function type.

Γ, x:τ₁ ⊢ e : τ₂

Γ ⊢ λx.e : τ₁ ⊸ τ₂

3. Application (Linear):

Γ₁ ⊢ e₁ : τ₁ ⊸ τ₂ Γ₂ ⊢ e₂ : τ₁

Γ₁, Γ₂ ⊢ e₁ e₂ : τ₂

Call-by-value (eager): Arguments are evaluated before function application
Call-by-name: Arguments are passed unevaluated and evaluated when used
Lazy evaluation: Call-by-name with sharing (memoization) of evaluated arguments

(λx.e₁) e₂ → e₁[e₂/x]

Notice that e₂ is substituted directly without being evaluated first.

For true lazy evaluation, we need thunk memoization to ensure that e₂ is evaluated at most
once, regardless of how many times x is used in e₁. This is typically implemented using a
mechanism like thunks that store the result of the first evaluation.

5.3 Mechanized Semantics with Coq

Mechanized semantics uses proof assistants like Coq to formalize language semantics and
verify properties.

Here's a Coq formalization of lambda calculus, incorporating the necessary shift/de Bruijn
indexing for correct substitution:

Inductive term : Type :=

| var : nat -> term

| app : term -> term -> term

| abs : term -> term.

(* Lifting operation to handle de Bruijn indices correctly *)

Fixpoint lift (d:nat) (c:nat) (t:term) : term :=

match t with

| var n => if le_gt_dec c n then var (n+d) else var n

| app t1 t2 => app (lift d c t1) (lift d c t2)

| abs t' => abs (lift d (S c) t')

end.

(* Substitution with proper handling of indices *)

Fixpoint subst (s:term) (j:nat) (t:term) : term :=

match t with

| var n => match nat_compare n j with

| Eq => lift j 0 s

| Gt => var (pred n)

| Lt => var n

end

| app t1 t2 => app (subst s j t1) (subst s j t2)

| abs t' => abs (subst s (S j) t')

end.

Inductive step : term -> term -> Prop :=

| step_beta : forall t1 t2,

step (app (abs t1) t2) (subst t2 0 t1)

| step_app1 : forall t1 t1' t2,

step t1 t1' ->

step (app t1 t2) (app t1' t2)

| step_app2 : forall v t2 t2',

value v ->

step t2 t2' ->

step (app v t2) (app v t2')

Part 6: Standard ML Implementation Examples
6.1 Implementing an Interpreter

with value : term -> Prop :=

| value_abs : forall t, value (abs t).

(* Expression type for a simple language *)

datatype expr =

Var of string

| Int of int

| Bool of bool

| Add of expr * expr

| If of expr * expr * expr

| Fun of string * expr

| App of expr * expr;

(* Value type *)

datatype value =

IntVal of int

| BoolVal of bool

| FunVal of string * expr * env

and env = (string * value) list;

(* Environment lookup *)

fun lookup [] x = raise Fail ("Unbound variable: " ^ x)

| lookup ((y, v)::rest) x = if x = y then v else lookup rest x;

(* Evaluation function *)

fun eval _ (Int n) = IntVal n

| eval _ (Bool b) = BoolVal b

| eval env (Var x) = lookup env x

| eval env (Add(e1, e2)) =

(case (eval env e1, eval env e2) of

(IntVal n1, IntVal n2) => IntVal(n1 + n2)

| _ => raise Fail "Type error in addition")

| eval env (If(e1, e2, e3)) =

(case eval env e1 of

BoolVal true => eval env e2

| BoolVal false => eval env e3

| _ => raise Fail "Type error in conditional")

| eval env (Fun(x, body)) = FunVal(x, body, env)

| eval env (App(e1, e2)) =

(case eval env e1 of

FunVal(x, body, env') =>

let val v = eval env e2

in eval ((x, v)::env') body

6.2 Type Checker Implementation

end

| _ => raise Fail "Type error in application");

(* Type for our simple language *)

datatype typ =

TInt

| TBool

| TFun of typ * typ;

(* Type environment *)

type tenv = (string * typ) list;

(* Type lookup *)

fun tlookup [] x = NONE

| tlookup ((y, t)::rest) x = if x = y then SOME t else tlookup rest x;

(* Type checking function *)

fun typeOf env (Int _) = TInt

| typeOf env (Bool _) = TBool

| typeOf env (Var x) =

(case tlookup env x of

SOME t => t

| NONE => raise Fail ("Unbound variable: " ^ x))

| typeOf env (Add(e1, e2)) =

(case (typeOf env e1, typeOf env e2) of

(TInt, TInt) => TInt

| _ => raise Fail "Type error in addition")

| typeOf env (If(e1, e2, e3)) =

(case typeOf env e1 of

TBool =>

let val t2 = typeOf env e2

val t3 = typeOf env e3

in if t2 = t3 then t2

else raise Fail "Branches have different types"

end

| _ => raise Fail "Condition must be boolean")

| typeOf env (Fun(x, body)) =

let val argType = TInt (* Assume int for simplicity *)

val bodyType = typeOf ((x, argType)::env) body

in TFun(argType, bodyType)

end

| typeOf env (App(e1, e2)) =

(case typeOf env e1 of

TFun(t1, t2) =>

if typeOf env e2 = t1 then t2

Part 7: Functional Programming with F#
7.1 Higher-Order Functions

7.2 Tree Operations

else raise Fail "Argument type mismatch"

| _ => raise Fail "Function expected");

// Map implementation

let rec map f list =

match list with

| [] -> []

| x::xs -> f x :: map f xs

// Filter implementation

let rec filter predicate list =

match list with

| [] -> []

| x::xs when predicate x -> x :: filter predicate xs

| _::xs -> filter predicate xs

// Fold-left implementation

let rec foldl folder state list =

match list with

| [] -> state

| x::xs -> foldl folder (folder state x) xs

// Fold-right implementation

let rec foldr folder state list =

match list with

| [] -> state

| x::xs -> folder x (foldr folder state xs)

// Examples

let numbers = [1..10]

let squares = map (fun x -> x * x) numbers

let evens = filter (fun x -> x % 2 = 0) numbers

let sum = foldl (+) 0 numbers

let product = foldr (*) 1 numbers

// Binary tree type

type Tree<'a> =

| Leaf of 'a option

| Node of Tree<'a> * Tree<'a>

// Map over tree

Conclusion
This document has provided a comprehensive, formal treatment of programming language
semantics, focusing on syntax, operational semantics, and type systems. The mathematical
foundations established here allow for rigorous reasoning about program behavior,
correctness, and safety.

We've covered the essential theory of functional programming languages through a rigorous
mathematical lens, illustrated with practical examples in Standard ML and F#. This
knowledge forms the basis for understanding, implementing, and reasoning about
programming languages.

References

let rec mapTree f tree =

match tree with

| Leaf None -> Leaf None

| Leaf (Some x) -> Leaf (Some (f x))

| Node (left, right) -> Node (mapTree f left, mapTree f right)

// Filter over tree

let rec filterTree predicate tree =

match tree with

| Leaf None -> Leaf None

| Leaf (Some x) -> if predicate x then Leaf (Some x) else Leaf None

| Node (left, right) -> Node (filterTree predicate left, filterTree

predicate right)

// Fold over tree

let rec foldTree folder state tree =

match tree with

| Leaf None -> state

| Leaf (Some x) -> folder state x

| Node (left, right) ->

let leftResult = foldTree folder state left

foldTree folder leftResult right

// Example

let myTree = Node (Node (Leaf (Some 1), Leaf (Some 2)), Leaf (Some 3))

let doubledTree = mapTree (fun x -> x * 2) myTree

let filteredTree = filterTree (fun x -> x > 1) myTree

let sum = foldTree (fun acc x -> acc + x) 0 myTree

1. Benjamin C. Pierce, Types and Programming Languages, MIT Press, 2002
2. Glynn Winskel, The Formal Semantics of Programming Languages, MIT Press, 1993
3. Robert Harper, Practical Foundations for Programming Languages, Cambridge

University Press, 2016

4. Simon Peyton Jones, The Implementation of Functional Programming Languages,
Prentice Hall, 1987

5. Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Semantics Engineering with PLT
Redex, MIT Press, 2009

